If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-10t-15=0
a = 3; b = -10; c = -15;
Δ = b2-4ac
Δ = -102-4·3·(-15)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{70}}{2*3}=\frac{10-2\sqrt{70}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{70}}{2*3}=\frac{10+2\sqrt{70}}{6} $
| 49=2+r | | 2x+B=150 | | x/20=1200 | | –50p2–18=0 | | 5-7=4-4(x+4)-x | | 3+7=4-(x+5) | | 3-(-8)=7x-5x+5 | | 6x-3x+9=3 | | 7(6+5k)=-27 | | 6x-3x+4=1 | | -19=45m=17 | | 52=4(3x+4) | | 15x4/5+6x-8=180 | | 7x+31=-11 | | 3y+³/y×3=27 | | 110-2x=3(x-10) | | 93=6x-3 | | 6x+6+4x+8+3x+9=2x+10 | | 5/8v=15 | | -5=7x-26 | | 6x-37=-19 | | 69=3x-12 | | 11b+9b=20 | | 14=7x+21 | | (x=10)+(3-5)+x=180 | | k−17=2 | | 5y+35=6(17)+3 | | 19=-5h+4h | | c+15=17 | | w+w=14 | | 2/5v=10;v=255 | | 11x-11x-36x=-11+11 |